Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters

نویسندگان

  • Kiera Murphy
  • Orla O'Sullivan
  • Mary C. Rea
  • Paul D. Cotter
  • R. Paul Ross
  • Colin Hill
چکیده

Thuricin CD is a two-component bacteriocin produced by Bacillus thuringiensis that kills a wide range of clinically significant Clostridium difficile. This bacteriocin has recently been characterized and consists of two distinct peptides, Trnβ and Trnα, which both possess 3 intrapeptide sulphur to α-carbon bridges and act synergistically. Indeed, thuricin CD and subtilosin A are the only antimicrobials known to possess these unusual structures and are known as the sactibiotics (sulplur to alpha carbon-containing antibiotics). Analysis of the thuricin CD-associated gene cluster revealed the presence of genes encoding two highly unusual SAM proteins (TrnC and TrnD) which are proposed to be responsible for these unusual post-translational modifications. On the basis of the frequently high conservation among enzymes responsible for the post-translational modification of specific antimicrobials, we performed an in silico screen for novel thuricin CD-like gene clusters using the TrnC and TrnD radical SAM proteins as driver sequences to perform an initial homology search against the complete non-redundant database. Fifteen novel thuricin CD-like gene clusters were identified, based on the presence of TrnC and TrnD homologues in the context of neighbouring genes encoding potential bacteriocin structural peptides. Moreover, metagenomic analysis revealed that TrnC or TrnD homologs are present in a variety of metagenomic environments, suggesting a widespread distribution of thuricin-like operons in a variety of environments. In-silico analysis of radical SAM proteins is sufficient to identify novel putative sactibiotic clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains

Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...

متن کامل

Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis

Current re-emergence of Nipah virus (NiV) in India caused 11 deaths so far and many patients were kept in quarantine. A thorough study of previous outbreaks occurred in Malaysia, Bangladesh and India represents cases with high rate of fatality due to acute encephalitis. Our work involves genome analysis of NiV for prediction of miRNAs and their targeted genes in human in order to understand enc...

متن کامل

Systematic Association of Genes to Phenotypes by Genome and Literature Mining

One of the major challenges of functional genomics is to unravel the connection between genotype and phenotype. So far no global analysis has attempted to explore those connections in the light of the large phenotypic variability seen in nature. Here, we use an unsupervised, systematic approach for associating genes and phenotypic characteristics that combines literature mining with comparative...

متن کامل

Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens.

Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the M cluster, the cofactor of the molybdenum nitrogenase from Azotobacter vinelandii. Here, we report the identification and characterization of two naturally "truncated" homologs of NifB from Methanosarcina acetivorans (NifB(Ma)) and Methanobacterium thermoautotrophicu...

متن کامل

Characterization of auxiliary iron–sulfur clusters in a radical S‐adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1

PqqE is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the initial reaction of pyrroloquinoline quinone (PQQ) biosynthesis. PqqE belongs to the SPASM (subtilosin/PQQ/anaerobic sulfatase/mycofactocin maturating enzymes) subfamily of the radical SAM superfamily and contains multiple Fe-S clusters. To characterize the Fe-S clusters in PqqE from Methylobacterium extorquens AM1, Cys r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011